Las ondas gravitacionales impiden que estemos en dos sitios a la vez

29 11 2009

El fenómeno de la decoherencia cuántica podría tener su origen en fenómenos como el Big Bang. Las partículas subatómicas pueden estar en dos sitios a la vez, gracias a su doble naturaleza onda-partícula. Sin embargo, los objetos macroscópicos no disfrutan de esa ventaja, concentrados como están en uno solo de los estados posibles. Un equipo de físicos franceses afirma ahora que el paso de esa superposición de estados cuánticos al estado único macroscópico podría estar provocado por ondas gravitacionales, oscilaciones del espacio-tiempo generadas por eventos astrofísicos violentos que aún no han podido ser observadas. Por Yaiza Martínez.

Gato de Schrödinger, clásico ejemplo de superposición de estados. Imagen: Chubas. Deviantart.

Las partículas subatómicas tienen una propiedad aparentemente mágica: pueden estar en dos sitios a la vez, gracias a su doble naturaleza de onda-partícula, fenómeno conocido comosuperposición cuántica. ¿Por qué nosotros no?

La respuesta más simple es que los objetos de mayor tamaño que el átomo no están sujetos a las mismas leyes que imperan en la mecánica cuántica, y que rigen a las partículas subatómicas.

Pero la frontera entre los mundos regidos por la física clásica y la física de partículas sigue siendo un misterio para los científicos.

Una de las ideas existentes es que todo comienza como un sistema cuántico, existiendo en un estado de superposición cuántico y, después, al interactuar con un medio, se colapsa para concretarse en un estado clásico, siguiendo un proceso conocido como decoherencia cuántica (concreción de un estado determinado).

La decoherencia cuántica es por tanto un fenómeno físico susceptible de explicar la transición entre las leyes físicas cuánticas y las leyes físicas clásicas tal como las conocemos en el mundo cotidiano o macroscópico. Esta teoría fue formulada en 1970 por el físico alemán Dieter Zeh, quien en 2002 concedió una entrevista a Tendencias21 explicando que los así llamados modelos de decoherencia permiten explicar la ausencia de superposiciones en los estados macroscópicos de la materia, sin necesidad de una intervención determinante del observador.

Ondas y decoherencia cuántica

Según publica la revista NewScientist, un equipo de científicos franceses propone ahora otra respuesta para esta incógnita, que ya habían esbozado el año pasado en un interesante artículo.

Brahim Lamine de la Universidad Pierre et Marie Curie de París, y sus colaboradores afirman que las llamadas ondas gravitacionales serían las responsables de la existencia de los objetos en un único estado, es decir, del paso del estado cuántico (superposición de diversos estados) a uno solo.

Se sabe que estas ondas, aunque nunca han sido detectadas directamente, son oscilaciones del espacio-tiempo generadas por eventos astrofísicos violentos, como el Big Bang o las colisiones de agujeros negros.

Como consecuencia de dichos eventos, se producen en dicho espacio-tiempo unas ondas de amplitudes muy bajas que provocarían, según los investigadores, que la ambigüedad de estados típica de la física subatómica se colapse, dando lugar a un único estado.
Lee el resto de esta entrada »





Descubren la “electricidad magnética”

15 10 2009

Científicos descubrieron el equivalente magnético de la electricidad; “cargas” magnéticas únicas que se comportan e interactúan como las cargas eléctricas.

Hielo de espín (Foto: S. Bramwell)

La “magnetricidad” sólo existe dentro de un material cristalino especial llamado hielo de espín.

La investigación, llevada a cabo en el Centro de Nanotecnología de Londres, es la primera que hace uso de los monopolos magnéticos que sólo existen en un material cristalino llamado hielo de espín.

Según los científicos -que publican su estudio en la revista Nature- lograron demostrar que los monopolos se juntan para formar una “corriente magnética” similar a la electricidad.

El fenómeno, bautizado como “magnetricidad”, podría ser usado en dispositivos de almacenamiento magnético o en computación, dicen los autores.

Monopolos

Los monopolos magnéticos (que son partículas hipotéticas que tendrían un solo polo magnético) fueron planteadas por primera vez hace más de un siglo como un análogo perfecto de las cargas eléctricas.

Aunque hay protones y electrones con cargas eléctricas netas positivas y negativas, no hay partículas que transporten cargas magnéticas, porque cada imán tiene un polo “norte” y un polo “sur”.

En septiembre pasado, dos grupos de investigación independientes informaron de la existencia de monopolos, “partículas” que transportaban una carga magnética general. Pero sólo existían en los cristales de hielo de espín.

Estos cristales están formados de pirámides de átomos cargados, o iones, arreglados de tal forma que cuando son enfriados a temperaturas extremadamente bajas, los materiales muestran “bultos” pequeñísimos y discretos de carga magnética.

Imán y limaduras de metal

Las líneas de fuerza de un campo magnético puede verse en el arreglo de las limaduras de metal junto al imán.

Ahora, uno de estos equipos -el del Centro de Nanotecnología de Londres- ha logrado demostrar que estas “cuasipartículas” de carga magnética pueden moverse juntas formando una corriente magnética como la corriente eléctirca que se forma al mover electrones.

Lo lograron usando partículas subatómicas llamadas muones, creadas en el Centro ISIS del Consejo de Ciencia y Tecnología cerca de Oxford, Inglaterra.

Los muones se descomponen millonésimas de segundo después de ser producidos en otras partículas subatómicas.

Pero la dirección en que vuelan las partículas resultantes es un indicador del campo magnético en una pequeña región alrededor de los muones.

Como electrones

El equipo, dirigido por Stephen Bramwell, implantó estos muones en hielo de espín para demostrar la forma como los monopolos magnéticos se mueven.

Demostraron que cuando el hielo de espín es colocado en un campo magnético, los monopolos se acumulan en un lado, justo como se acumularían los electrones cuando se les coloca en un campo eléctrico.

Tal como explicó a la BBC el profesor Bramwell, es poco probable que ese avance pueda desarrollarse como un medio de ofrecer energía, principalmente porque las partículas viajan sólo dentro de los hielos de espón.

“No vamos a ver una bombilla de luz magnética o nada como eso” expresa el científico.

Pero su se logra crear diferentes materiales de hielo de espín para modificar las formas como los monopolos se mueven a través de ellos, los materiales podrían en el futuro ser utilizados en dispositivos de almacenamiento con “memoria magnética”, señala el investigador.

O también, agrega, podrían usarse en la espinotrónica -o magnetoeléctonica- un campo que podría mejorar en el futuro la capacidad de la computación.

Fuente: BBC. Descubren la “electricidad magnética”