Afinan un láser de cascada cuántica como si fuera una guitarra

6 12 2009

Permitirá ajustar con gran precisión las radiaciones terahertz para ver a través de ropa o para detectar productos químicos a distancia. Durante más de 30 años, los científicos han estado intentando aprovechar las llamadas radiaciones terahertz que, situadas entre las radiaciones de las ondas microondas y de las ondas infrarrojas, servirían para diversas aplicaciones como la transmisión de datos ultrarrápida o para “ver a través” de las paredes y de la ropa. Ahora, investigadores del MIT han desarrollado un método de afinamiento de láseres de cascada cuántica o QCL de manera similar a como se afinan las guitarras. Este logro permitirá ajustar la frecuencia de la luz láser con gran precisión, para la aplicación de las radiaciones terahertz en múltiples sectores. Por Yaiza Martínez.Fuente: MIT.

Durante más de 30 años, los científicos han estado intentando aprovechar las llamadas radiaciones terahertz, que se cree podrían servir para la detección química sensible, para generar la transmisión de datos ultrarrápida y para “ver a través” de las paredes y la ropa.

Situadas entre las radiaciones de las ondas microondas y de las ondas infrarrojas, las radiaciones terahertz pueden atravesar las telas, el plástico y los tejidos del organismo humano sin dañarlos, de manera más segura que los rayos-x, aseguran los científicos.

Por otro lado, estas radiaciones permitirían distinguir productos químicos de manera individual, aunque se encuentren mezclados con otros. Así, por ejemplo, en un aeropuerto, un escáner terahertz serviría para determinar si dentro de cualquier maleta cerrada van explosivos, metanfetaminas o aspirinas.

Nuevo enfoque

Sin embargo, y a pesar de su potencial utilidad, hasta ahora no ha resultado fácil encontrar un método práctico de generación de radiaciones terahertz. Lee el resto de esta entrada »





Explican por qué el ser humano aprende más de sus aciertos que de sus errores

31 07 2009

El cerebro asimila lo que hacemos bien, no lo que hacemos mal
Equivocarse es humano pero no nos sirve de mucho, porque de lo que aprendemos es de los aciertos. Esto es lo que sugieren los resultados de una investigación sobre el cerebro realizada por científicos del MIT, en la que se constató que dos regiones cerebrales concretas se activan sólo cuando hacemos las cosas bien, y no cuando las hacemos mal. Dado que las áreas activas están vinculadas con el aprendizaje y la memoria, los científicos afirman que sólo aprenderíamos de los aciertos. Por Yaiza Martínez

Imágenes utilizadas en el experimento, y que fueron mostradas a los monos para que éstos miraran a derecha o izquierda a cambio de una recompensa. Fuente: MIT.

Choice

Tropezar dos veces en la misma piedra es, al parecer, inevitable, al menos desde el punto de vista del cerebro. Esto es lo que sugieren los resultados de una investigación realizada por científicos del Picower Institute for Learning and Memory del MIT

Earl K. Miller, profesor de dicho instituto, y sus colaboradores, Mark Histed y Anitha Pasupathy, consiguieron generar por vez primera una instantánea del proceso de aprendizaje de unos monos. 

En esta imagen se pudo ver cómo las células individuales del cerebro no responden igual ante la información sobre una acción correcta que ante la información sobre una acción errónea. 

Según explica el profesor Miller en un comunicado emitido por el MIT, lo que se ha demostrado es que las células del cerebro, cuando una acción genera un buen resultado, se sincronizan con lo que el animal está aprendiendo. Por el contrario, después de un error, no se produce ningún cambio en el cerebro ni se transforma en nada el comportamiento de los animales. 

Esta investigación ayudaría a comprender mejor los mecanismos de plasticidad neuronal activados como respuesta al entorno, y tendría implicaciones para el entendimiento de cómo aprendemos, y también en la comprensión y el tratamiento de los trastornos de aprendizaje. La plasticidad neuronal es la capacidad del cerebro de cambiar a partir de la experiencia. 

Cómo se hizo

A los monos estudiados se les asignó la tarea de mirar dos imágenes alternantes en la pantalla de un ordenador. Cuando aparecía una de ellas, los monos eran recompensados si giraban su mirada hacia la derecha; cuando aparecía la otra imagen, los monos eran recompensados si miraban a la izquierda. 

Los animales fueron tanteando, por el sistema de “prueba y error”, para descubrir qué imágenes exigían mirar en qué dirección. 

Gracias a las mediciones realizadas entretanto en sus cerebros, los investigadores descubrieron que, dependiendo de si las respuestas de los monos eran correctas o incorrectas, ciertas partes de sus cerebros “resonaban” con las implicaciones de sus respuestas, durante algunos segundos. 

Así, la actividad neuronal que seguía a una respuesta correcta y su recompensa correspondiente ayudaban a los monos a realizar mejor la siguiente tarea. 

Por tanto, explica Miller, justo después de un acierto, las neuronas procesaban la información más deprisa y más efectivamente, y el mono tendía más a acertar la siguiente respuesta. 
Sin embargo, después de un error no había mejoría alguna en el desempeño de las tareas. En otras palabras, sólo después del éxito, y no de los fracasos, tanto el comportamiento de los monos como el procesamiento de información de los cerebros de éstos mejoraron. 

Dos regiones cerebrales implicadas

Según explican los científicos en la revista especializada Neuron-9 , para aprender de la experiencia se necesita saber si una acción pasada ha producido un buen resultado. 

Se cree que la corteza prefrontal del cerebro y los ganglios basales juegan un importante papel en el aprendizaje de las relaciones entre estímulo y respuesta. 

La corteza prefrontal del cerebro dirige los pensamientos y las acciones de acuerdo con objetivos internos, mientras que los ganglios basales están relacionados con el control motor, la cognición y las emociones. 

Gracias a la presente investigación se sabe ahora, además, que ambas áreas cerebrales cuentan con toda la información disponible para llevar a cabo las conexiones y ordenaciones neuronales necesarias para el aprendizaje. 

Por otro lado, hasta ahora se sabía que los ganglios basales y la corteza prefrontal están conectados entre sí y con el resto del cerebro, y que nos ayudan a aprender las asociaciones abstractas mediante la generación de breves señales neuronales, cuando una respuesta es correcta o incorrecta. 

Pero, hasta ahora, no se había podido entender cómo esta actividad transitoria, que se produce en menos de un segundo, podía influir en acciones realizadas a continuación. 

Más información transmitida

Gracias a este estudio, los investigadores descubrieron actividad en muchas neuronas dentro de ambas regiones del cerebro, como respuesta a la entrega o no de la recompensa. Esta actividad duró varios segundos, hasta la siguiente prueba. 

Las respuestas de las neuronas de los monos fueron, por otra parte, más fuertes si en la prueba inmediatamente anterior habían sido recompensados, y más débiles si en la prueba anterior se habían equivocado. 

Por último, tras una respuesta correcta, los impulsos eléctricos de las neuronas, tanto en la corteza prefrontal como en los ganglios basales, fueron más fuertes y transmitieron más cantidad de información. 

Según Miller, esto explicaría porqué, en un nivel neuronal, tendemos a aprender más de nuestros aciertos que de nuestros fallos.

Fuente: Tendencias21. Explican por qué el ser humano aprende más de sus aciertos que de sus errores





Crean una batería de ión de litio con virus genéticamente modificados

1 07 2009
Aspecto de la batería fabricada con virus. Fuente: MIT.

Battery

Científicos del MIT acaban de hacer público el desarrollo de un prototipo de batería de ión de litio cuyo cátodo y ánodo han sido fabricados con virus genéticamente modificados. La ingeniería genética aplicada a virus bateriófagos comunes, es decir, virus que infectan a las bacterias pero que son inofensivos para los humanos ha dado lugar así a una batería que podría alcanzar una capacidad y un rendimiento energéticos similares a los de las actuales baterías recargables de los vehículos eléctricos híbridos. Las ventajas: fabricación barata y ecológica; y también flexibilidad y capacidad de adaptación a cualquier dispositivo. La desventaja: estas baterías pueden ser cargadas y descargadas sólo 100 veces sin que pierdan capacidad de almacenamiento eléctrico, menos veces que las baterías de ión de litio tradicionales. Pero los investigadores esperan resolver pronto este problema, y el próximo prototipo tendrá ya fines comerciales. Por Yaiza Martínez.

Un equipo de científicos del Instituto Tecnológico de Massachussets (MIT) ha conseguido utilizar virus genéticamente diseñados -mediante ingeniería genética -, para fabricar los extremos positivos y negativos de una batería de ión de litio

Estas baterías son dispositivos de almacenamiento de energía eléctrica, recargables, y se usan desde los años 90 del siglo pasado en teléfonos móviles, agendas electrónicas, ordenadores portátiles o lectores de música. 

Según explica el MIT en un comunicado, la nueva batería “vírica” podría alcanzar una capacidad y un rendimiento energéticos similares a los de las actuales baterías recargables de los vehículos eléctricos híbridos (coches cuya energía eléctrica proviene de baterías y, alternativamente, de un motor de combustión interna que mueve un generador). 

Angela Belcher, directora del proyecto de desarrollo del dispositivo, afirma, además, que esta batería “podría usarse en toda una gama de dispositivos electrónicos personales”. 

Una solución ecológica

El nuevo dispositivo precisa de un proceso de fabricación barato y ecológico, afirman sus creadores: la síntesis se produce a temperatura ambiente o inferior, y no requiere de disolventes orgánicos nocivos. Los materiales del interior de la batería, por otro lado, no son tóxicos. 

¿Pero cómo se fabrica? Según explican los científicos en un artículo aparecido al respecto en Science, para el desarrollo de esta batería se aplicó la estrategia de adherir materiales electroquímicamente activos (a los virus), para que éstos formaran redes alrededor de nanotubos de carbono (estructuras tubulares cuyo diámetro es del orden del nanómetro), gracias al reconocimiento biológico molecular. 

En otras palabras, en una batería de ión de litio tradicional, los iones de litio fluyen entre el ánodo negativamente cargado –normalmente de grafito- y el cátodo de carga positiva –normalmente de óxido de cobalto de de fosfato de hierro-, y en la nueva batería ánodo y cátodo estarían compuestos por virus genéticamente modificados. 

Fabricación costosa

Lograr su fabricación de ambos polos de la batería ha llevado bastante tiempo. Hace tres años, Belcher y sus colaboradores consiguieron diseñar genéticamente unos virus que podían “construir” un ánodo recubriéndose a sí mismos de óxido de cobalto y oro y, después, auto-ensamblándose los unos con los otros para formar un nanowire o nanohilo (un “alambre” con el diámetro de un nanómetro). 

Más recientemente, el equipo de investigadores se centró en crear el cátodo que completaría al ánodo anterior. Según los científicos, los cátodos son más difíciles de fabricar que los ánodos porque deben ser mejores conductores y más rápidos, pero la mayoría de los materiales que se pueden utilizar para hacerlos son altamente aislantes o no-conductores. 

Para salvar este obstáculo, los investigadores crearon, en primer lugar, virus genéticamente modificados que se recubren a sí mismos con fosfato de hierro, y que después se acoplan a nanotubos de carbono, creando así una red de un material que es muy buen conductor. A través de esta red viajan los electrones, transfiriendo energía en un brevísimo periodo de tiempo. 

Los virus utilizados en este caso fueron bacteriófagos comunes, es decir, virus que infectan a las bacterias pero que son inofensivos para los humanos. 

Futura comercialización

En las pruebas de laboratorio realizadas con estas novedosas soluciones, se demostró que las baterías “víricas” pueden ser cargadas y descargadas al menos 100 veces sin que pierdan capacidad de almacenamiento eléctrico, pero los científicos esperan conseguir aumentar mucho más esta cantidad de veces de recarga, aún inferior a la de las baterías de ión de litio tradicionales. 

El prototipo actual está empaquetado de la misma forma que una batería típica, pero la tecnología permite fabricar baterías de ensamblaje muy ligero, flexible y adaptable, que pueden tomar la forma de cualquier contenedor. 

Ahora que los investigadores ya han demostrado que pueden fabricar baterías de virus a nanoescala, intentarán formar mejores baterías usando materiales con mayor voltaje y capacidad, como el fosfato de manganeso o el fosfato de níquel. Cuando la próxima generación esté lista, la tecnología pasará a la producción comercial, afirmó Belcher.

Vínculo Fuente: Tendencias 21